

Bachelor of Arts (B.A.) Part—I Semester—II Examination
MATHEMATICS
(M₄ : Vector Calculus and Improper Integrals)
Optional Paper—2

Time : Three Hours]

[Maximum Marks : 60]

N.B. :— (1) Solve all the **FIVE** questions.

(2) All questions carry equal marks.

(3) Question Nos. **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT—I

1. (A) A particle moves so that its position vector is given by $\bar{r} = \cos wt \bar{i} + \sin wt \bar{j}$ where w is a constant. Show that :

(a) the velocity ∇ of the particle is perpendicular to \bar{r} .

(b) the acceleration \bar{a} is directed towards the origin and has magnitude proportional to the distance from the origin.

(c) $\bar{r} \times \nabla = \bar{a}$, constant vector.

6

(B) If $\phi = x^3 + y^3 + z^3 - 3xyz$, then find :

(i) $\bar{\nabla} \circ (\bar{\nabla} \phi)$ and

(ii) $\bar{\nabla} \times (\bar{\nabla} \phi)$.

6

OR

(C) If $\bar{v} = \bar{w} \times \bar{r}$, then prove that $\bar{w} = \frac{1}{2} \operatorname{curl} \bar{v}$, where $\bar{w} = w_1 \bar{i} + w_2 \bar{j} + w_3 \bar{k}$ is a constant vector.

6

(D) If $\bar{A} = (3x^2 + 6y) \bar{i} - 14yz \bar{j} + 20xz^2 \bar{k}$, then evaluate $\int_C \bar{A} \circ d\bar{r}$ from $(0, 0, 0)$ to $(1, 1, 1)$ along the path $x = t$, $y = t^2$, $z = t^3$.

6

UNIT-II

2. (A) Evaluate $\iint_R xy \, dx \, dy$ over the region R in the positive quadrant for which $x + y \leq 1$. 6

(B) Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{1}{1+x^2+y^2} \, dx \, dy$. 6

OR

(C) Evaluate $\iint_R (x^2 + y) \, dx \, dy$ by changing into polar coordinates, where R is the region $x^2 + y^2 \leq 1$. 6

(D) Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \, dz \, dx \, dy$. 6

UNIT-III

3. (A) If $\mathbf{F} = 2x\mathbf{i} - \mathbf{x}\mathbf{j} + y^2\mathbf{k}$. Then evaluate $\iiint_V \mathbf{F} \, dv$, where V is the region bounded by the surfaces $x = 0, y = 0, y = 6, z = x^2, z = 4$. 6

(B) Evaluate by Green's theorem $\oint_C (3x^2 - 8y^2) \, dx + (4y - 6xy) \, dy$, where C is the boundary of the region defined by $x = 0, y = 0, x + y = 1$. 6

OR

(C) Evaluate by Stoke's theorem $\int_C e^x \, dx + 2y \, dy - dz$, where C is the curve $x^2 + y^2 = 4, z = 2$. 6

(D) Evaluate $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, ds$, where $\mathbf{F} = x^2\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}$ and S is the surface of the solid cut off by the plane $x + y + z = a$ from the first octant. 6

UNIT-IV

4. (A) Test the convergence of :

(i) $\int_0^{\infty} e^{-x^2} \, dx$ and

(ii) $\int_1^{\infty} \frac{\log x}{x+a} \, dx$ where a is a positive constant. 6

(B) Prove that if $\int_a^\infty |f(x)| dx$ converges, then $\int_a^\infty f(x) dx$ also converges. Hence prove that $\int_0^\infty \frac{\sin x}{x^2+1} dx$ is convergent. 6

OR

(C) Prove that $\beta(m, n) = \frac{|m| |n|}{|m+n|}$. 6

(D) Prove that :

$$(i) \quad |n| = \int_0^1 \left(\log \frac{1}{x} \right)^{n-1} dx \text{ and}$$

$$(ii) \quad \beta(m, n) = 2 \int_0^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta. \quad 6$$

Questions—V

5. (A) If $\phi = \log r$, then find $\bar{\nabla}\phi$, where $r = |\mathbf{r}|$ and $\bar{\mathbf{r}} = xi + yj + zk$. 1½

(B) Show that $\mathbf{F} = y\bar{i} + z\bar{j} + x\bar{k}$ is solenoidal. 1½

(C) Change the order of $\int_0^2 \int_0^x f(x, y) dy dx$. 1½

(D) Evaluate $\int_0^1 \int_0^2 \int_0^3 xyz dz dy dx$. 1½

(E) Apply Green's theorem to prove that the area enclosed by a simple plane curve C is $\frac{1}{2} \oint_C x dy - y dx$. 1½

(F) Find the area of ellipse $x = a \cos \theta$, $y = b \sin \theta$ by using Green's theorem. 1½

(G) Prove that $\Gamma = 1$. 1½

(H) Evaluate $\beta\left(\frac{3}{2}, \frac{5}{2}\right)$. 1½